VMW Edu

Scientific thinking, Mathematics, and Logic

12 Lessons, x3 Series Rachel Sava

<u>Overview</u>

Stage 1:

- Lesson 1 Scientific thinking 1: Introduction
- Lesson 2 Logic 1: Introduction
- Lesson 3 Math fundamentals 1: Introduction
- Lesson 4 Scientific thinking 2: Structure
- Lesson 5 Logic 2: The rational detective
- Lesson 6 Math fundamentals 2: Numerical Reasoning
- Lesson 7 Scientific thinking 3: Flow
- Lesson 8 Logic 3: Puzzles and riddles
- Lesson 9 Math fundamentals 3: Logical reasoning
- Lesson 10 Computer science 1: Tools of computer science
- Lesson 11 Computer science 2: Computational Problem Solving
- Lesson 12 Applying logic Scratch programming project (NON BRILLIANT)

Stage 2:

- Lesson 1 Scientific thinking 4: Light
- Lesson 2 Logic 4: Multi-level thinking
- Lesson 3 Math fundamentals 4: Visually Understanding Algebra
- Lesson 4 Scientific thinking 5: Relativity
- Lesson 5 Logic 5: Competitive games
- Lesson 6 Math fundamentals 5: Algebraic reasoning
- Lesson 7 Computer science 3: Algorithmic thinking
- Lesson 8 -Logic 6: Logic machines
- Lesson 9 Applying logic Scratch programming project (NON BRILLIANT)
- Lesson 10 Algorithm fundamentals 1: Building blocks
- Lesson 11 Neural networks 1: Introduction
- Lesson 12 Neural networks 2: Neurons

Stage 3:

- Lesson 1 Math fundamentals 6: What comes next?
- Lesson 2 Probability Fundamentals 1: Introduction
- Lesson 3 Logic 7: Advanced Knights and Knaves
- Lesson 4 Probability fundamentals 2: Starting with probability

- Lesson 5 Probability fundamentals 3: Roll the dice
- Lesson 6 Probability fundamentals 4: Fairness and expected value
- **Lesson 7** Algorithm fundamentals 2: Array algorithms
- Lesson 8 Algorithm fundamentals 3: The Speed of algorithms
- Lesson 9 Artificial Neural Networks 1: Learning and the brain
- Lesson 10 Neural networks 3: Layers
- Lesson 11 Algorithm fundamentals 4: Stable Matching
- Lesson 12 Applying logic Scratch programming project (NON BRILLIANT)

Topics covered:

- Scientific Thinking (5)
 - Lessons 1.1, 1.4, 1.7, 2.1, 2.4
- Logic (10)
 - Lessons 1.2, 1.5, 1.8, 1.12, 2.2, 2.5, 2.8, 2.9, 3.3, 3.12
- Mathematics (6)
 - Lessons 1.3, 1.6, 1.9, 2.3, 2.6, 3.1
- Probability (4)
 - Lessons 3.2, 3.4, 3.5, 3.6
- Computer Science (6)
 - Lessons 1.10, 1.11, 1.12, 2.7, 2.9, 3.12
- Artificial Intelligence and Neural Networks (8)
 - Lessons 2.10, 2.11, 2.12, 3.7, 3.8, 3.9, 3.10, 3.11

Agenda (Stage 1)

#	Title	Category	Activities (Brilliant.org)
1	Scientific thinking 1: Introduction	Scientific thinking	Information theory: measuring uncertainty ('Entropy', 'Information Decreases Uncertainty)
			Bayesian thinking and Baye's rule ('Bayesian Thinking')
			Applying bayesian logic to science
			Homework problem: If you are given this research question and tools, which experiments would best answer it?
2	Logic 1: Introduction	Logic	Luk Tsut K'i classic boardgame problem
			Introduction to logical reasoning

			-
			(Logical Reasoning)
			Syllogisms and Sets: if X and Y are in group Z, what rules can we use to relate them? ('All, some, and none')
			First-Order Logic - representing logical statement with correct notation ('Formal Symbolization')
			Knights and Knaves puzzle: an introduction to advanced logic ('Knights and Formal Logic')
			Homework problem: Worksheet of logic puzzles - to be marked in class
3	Math fundamentals 1: Introduction	Mathematics	Introduction to AND, OR, and NOT gates.
			Arithmetic with logic gates ('Creating a Binary Comparator')
			Multi-level logic contingencies and generality ('Multiple Generality')
			Basis of logic in ordinary differential equations (ODEs) example ('Challenge: Higher-Order Equations')
			Homework problem: Worksheet of math puzzles and basic algebra
4	Scientific thinking 2: Structure	Scientific Thinking	The laws of nature and devising a scientific question ('Nature is a Puzzle', 'Science Rules', 'House of Mirrors')
			Integrating logic, mathematics, and algorithms to solve scientific questions
			Homework problem: Prepare for next class one scientific experiment from history and how they employed the process discussed today
5	Logic 2: The rational	Logic	Riddles of order

	detective		Crafty counting
			Mystery Containers
			Futoshiki
			Shuffles
			False information
			Homework problem: Worksheet of logic puzzles - to be marked in class
6	Math fundamentals 2: Numerical Reasoning	Math	Identifying equations and variables from everyday life ('Equations and Variables')
			Combination locks - how much information is needed to fully describe a system? ('Combination locks')
			Permutations - how to organise information ('Permutations')
			Homework problem: Calculating the minima of curves to determine minimum cost/time in word problems (to be applied to computer science)
7	Scientific thinking 3: Flow	Scientific Thinking	Homework problem: Calculating the minima of curves to determine minimum cost/time in word problems (to be applied to computer science) Vectors, Matrices, and mathematics for neural networks ('Optimization for Neural Networks')
7	Scientific thinking 3: Flow	Scientific Thinking	 Homework problem: Calculating the minima of curves to determine minimum cost/time in word problems (to be applied to computer science) Vectors, Matrices, and mathematics for neural networks ('Optimization for Neural Networks') Introduction to perceptrons ('Perceptrons as linear classifiers')
7	Scientific thinking 3: Flow	Scientific Thinking	 Homework problem: Calculating the minima of curves to determine minimum cost/time in word problems (to be applied to computer science) Vectors, Matrices, and mathematics for neural networks ('Optimization for Neural Networks') Introduction to perceptrons ('Perceptrons as linear classifiers') The universal approximator, an artificial neural network for any challenge ('The Universal Approximator')
7	Scientific thinking 3: Flow	Scientific Thinking	 Homework problem: Calculating the minima of curves to determine minimum cost/time in word problems (to be applied to computer science) Vectors, Matrices, and mathematics for neural networks ('Optimization for Neural Networks') Introduction to perceptrons ('Perceptrons as linear classifiers') The universal approximator, an artificial neural network for any challenge ('The Universal Approximator') ('Paradox and the Limits of Al')
7	Scientific thinking 3: Flow	Scientific Thinking	 Homework problem: Calculating the minima of curves to determine minimum cost/time in word problems (to be applied to computer science) Vectors, Matrices, and mathematics for neural networks ('Optimization for Neural Networks') Introduction to perceptrons ('Perceptrons as linear classifiers') The universal approximator, an artificial neural network for any challenge ('The Universal Approximator') ('Paradox and the Limits of Al') Homework problem: Take-home quiz, 3 long-form answers to flow questions

	riddles		Logical language
			If A then B
			Elimination grids
			Jigsaw map
			Homework problem: Find the correct solution to this Jigsaw map, like the one discussed in class
9	Math fundamentals 3: Logical reasoning	Mathematics, Logic	Thinking probabilistically ('Intro to Probability')
			Baye's Theorem and conditional probability ('Applying Conditional Probability')
			Real-world probability puzzle ('Problem Solving')
			Probability in scientific problems ('Probability in Science')
			Homework problem: Math and logic problem set
10	Computer science 1: Tools of computer science	Computer Science	The principle of parallel processing: in which order should these tasks be done? (IBM puzzle)('Parallelism')
			Introduction to Algorithms: breaking challenges into step-by-step processes ('Algorithms and Implementations', 'Divide and Conquer')
			Homework problem: Watch the youtube video of the binary calculator made from marbles - <u>https://youtu.be/i1e0T7IAELQ</u>
11	Computer science 2: Computational Problem Solving	Computer Science	Conditional algorithms: the application of logic gates ('Conditional Algorithms')

			Counting operations, multi-level logic in programming ('Counting Operations') Homework problem: Build your own basic calculator in PyCharm
12	Applying logic - Scratch programming project (NON BRILLIANT)	Computer Science, Al	The computer vision problem: pixel processing vs human intelligence example ('The Computer Vision Problem') Artificial neurons - encoding simple logical operations ('The Decision Box')
			Building an XOR gate: Escaping the limitations of neurons by stacking them in layers ('XOR Gates') Final lesson, no homework!